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Appendix D Auxiliary derivations and additional material

D.1 Auxiliary Derivations

Lemma D1. Let � � a (0) exp [� (0)]. Then:

(i) For all � 2 (0; �) : L = ;;

(ii) for all � � � : L = [0; ~v(�)] ; where ~v(�) : [�;1) ! [0; 1] ; ~v(�) = 0; ~v0 (�) � 0, with strict
inequality if ~v (�) < 1.

Proof. Part (i). When � 2 (0; �), conditions stipulated in (20) and (22) applied on v = 0

entail that: q0 = 1 and �0 > 0. As a result, from Lemma 1 it follows that qv = 1, 8v 2 V:
Therefore, since a0 (v) � 0 and �0 (v) > 0, again from (22), �v > 0 for all v 2 V obtains, and
thus L = ;.

Part (ii). Firstly, note that (22) applied on v = 0, in conjunction Lemma 1, implies that when

� = �, then �0 = 0 and q0 = 1. Then, Lemma 1 implies Q = 1. Using these results in (22)

yields:

�v = � (v) + ln [� (v) =w]� ln�;

implying that �v > 0 for all v 2 (0; 1]. As a result, the set L = ;, meaning that ~v(�) = 0.

Secondly, notice that, from Lemma D.2 below, @qv (v) =@v < 0 when qv > 1, hence the set

L � V comprises the lower-indexed goods in V, with ~v(�) representing its upper bound. Given
Lemma 1 and Lemma D.3 below, the aggregate quality index can be written as follows:

Q = 1� ~v(�) +
Z ~v(�)

0
qv dv:

Furthermore, observe that, whenever ~v(�) < 1, ln (�=Q) = � (~v(�)) + ln [� (~v(�)) =w] must hold

in equilibrium. This last condition yields, after some simple algebra:

Q = �w exp [�� (~v)] =� (~v) :

In addition to that, because of Lemma 1, in equilibrium:

[� (v)� 1] ln qv = ln (�=Q)� � (v)� ln [� (v) =w]

must hold for any v � ~v(�). Using the former in the latter, we may obtain:

qv = qv (~v(�)) �
�
� (~v(�))

� (v)

� 1
�(v)�1

exp

�
� (~v(�))� � (v)
� (v)� 1

�
, 8 v 2 [0; ~v(�)]: (29)
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In equilibrium, it must be the case that:

�w exp [�� (~v(�))] =a (~v(�)) = 1� ~v(�) +
Z ~v(�)

0
qv (~v(�)) dv; (30)

where the right hand-side of (30) uses (29). Computing the total di¤erentiation of (30), yields

after some algebra:32

Q

�
d� =

�
�0 (~v(�))

� (~v(�))
+ �0 (~v(�))

�"
Q+

Z ~v(�)

0

qv
� (v)� 1dv

#
d~v;

leading �nally to:

d~v

d�
=

"
�

Q

�
�0 (~v(�))

� (~v(�))
+ �0 (~v(�))

� 
1� ~v(�) +

Z ~v(�)

0

� (v)

� (v)� 1qvdv
!#�1

> 0:

where the last inequality follows from the properties of the functions � (�) and � (�).

Lemma D2. The optimal quality qv of any good v 2 V can be written as follows:

qv = max

8<:
"
e�(0)� (0)

e�(v)� (v)

# 1
�(v)�1

q
�(0)�1
�(v)�1
0 ; 1

9=; ; (31)

Proof. Recall that qv = 1, 8v =2 L. For all other goods, (22) in conjunction with (20) yield:

� (v) + ln� (v) + [� (v)� 1] ln qv = � (0) + ln� (0) + [� (0)� 1] ln q0; 8v 2 L:

Isolating [� (v)� 1] ln qv, and applying exponentials to both sides gives:

(qv)
�(v)�1 =

e�(0)

e�(v)
�(0)

� (v)
(q0)

�(0)�1 ; 8v 2 L:

Finally, raising both sides to the power [� (v)� 1]�1, and considering Lemma 1, (31) obtains.

Lemma D3. If ~v(�) < 1, then q~v(�) = 1.

Proof. By de�nition of L, �~v(�) = 0. Thus, the condition (22) applied on ~v(�) yields:

� (~v(�)) + ln [� (~v(�)) =w]� ln�+ lnQ = � [� (~v(�))� 1] ln q~v(�) (32)

32For the rest of the proof, we will assume that the envelope function �(v) is di¤erentiable at all points. It

must be straightforward to observe, though, that the function �(v) is strictly increasing in v, since both a(v) and

a�(v) are strictly increasing in v, and that this monotonicity is su¢ cient to ensure monotonicity of ev(�), which is
the important feature of ev(�) that we require in our model.
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Suppose now that q~v(�) > 1, and take some " 2 (0; 1 � ~v(�)]. Then, since v = ~v(�) + " =2 L, it
must be the case that:

� (~v(�) + ") + ln [� (~v(�) + ") =w]� ln�+ lnQ = �~v(�)+": (33)

Then, by continuity of � (�) and � (�), and using the result in (32), we must have:

lim
"!0

f� (~v(�) + ") + ln [� (~v(�) + ") =w]� ln�+ lnQg = � [� (~v(�))� 1] ln q~v(�) < 0:

Hence, q~v(�) > 1 cannot possibly hold when ~v(�) < 1 as it would imply that �~v(�)+" < 0 in (33)

for "! 0, violating (20).

Proof of @#(m)=@w � 0.

Suppose �rst that ~v < m. Then, L � [0;m). Di¤erentiating (22) with respect to w yields:

� (v)� 1
qv

@qv
@w

+
1

Q

@Q

@w
= 0; 8v 2 L: (34)

Furthermore, from (31) it follows that:

@qv
@w

=
� (0)� 1
� (v)� 1

qv
q0

@q0
@w

; 8v 2 L: (35)

Since @Q=@w =
R ~v
0 (@qz=@w) dz, combining (34) and (35) yields:�
1� ~v +

Z ~v

0

� (z)

� (z)� 1qzdz
�
� (0)� 1
q0

1

Q

@q0
@w

= 0 ) @q0
@w

= 0;

Therefore, using again (35), @qv=@w = 0 for all v 2 [0; ~v] obtains. In addition, because of Lemma
1, it must thus be the case that @qv=@w = 0 holds as well for all v 2 (~v; 1]. Finally, recalling (6)
it then follows that @�v=@w = 0 for all v 2 V, which in turn implies that @# (m) =@w = 0.
Suppose now that ~v � m. Di¤erentiating (22) with respect to w now yields:

� (v)� 1
qv

@qv
@w

+
1

Q

@Q

@w
=

8<: 0; 8v 2 [0;m)
1=w; 8v 2 [m; ~v]

(36)

From (36) it follows that a necessary condition for @# (m) =@w > 0 to hold is that @Q=@w < 0.33

However, (36) means that if @Q=@w < 0, then @qv=@w > 0 should hold for all v 2 [m; ~v]. If
~v = 1; it must be straightforward to observe that @Q=@w < 0 cannot thus hold. Alternatively, if

33Otherwise, if @Q=@w � 0, (36) would imply that @qv=@w � 0 for all v 2 [0;m). Recalling (6), it is then
straightforward to observe that @Q=@w � 0 would mean @�v=@w � 0 for all v 2 [0;m), which in turn leads to
@# (m) =@m � 0.
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~v < 1, then @Q=@w < 0 would require that @qv=@w < 0 prevails for some v 2 (~v; 1] which is not
feasible either since it would lead to violating the constraint qv � 1. As a result, @Q=@w � 0

must hold, which in turn implies @# (m) =@w � 0.

Proof of @#� (m) =@w < 0.

Suppose �rst that ~v� < m. Then, L�� [0;m). Di¤erentiating (22) �adjusted for representing
an individual from F �with respect to w yields:

� (v)� 1
q�v

@q�v
@w

+
1

Q�
@Q�

@w
= � 1

w
; 8v 2 L�: (37)

In addition, from (31) it follows that:

@q�v
@w

=
� (0)� 1
� (v)� 1

q�v
q�0

@q�0
@w

; 8v 2 L�: (38)

Combining (37) and (38) leads to: 
1� ~v� +

Z ~v�

0

� (z)

� (z)� 1qzdz
!
� (0)� 1
q�0

1

Q�
@q�0
@w

= � 1
w

) @q�0
@w

< 0:

Hence, using again (38), @q�v=@w < 0 for all v 2 [0; ~v�] obtains, which in turn implies @Q�=@w <
0. Next, since for all v � ~v� the constraint q�v � 1 is binding, it must be the case that @q�v=@w � 0,
8v 2 (~v�; 1]. As a result, because of (6), @��v=@w > 0 for all v 2 [m; 1] follows, which in turn
implies @#� (m) =@w < 0.

Suppose now ~v� � m. Di¤erentiating (22) with respect to w now yields:

� (v)� 1
q�v

@q�v
@w

+
1

Q�
@Q�

@w
=

8<: �1=w; 8v 2 [0;m)
0; 8v 2 [m; ~v�]

(39)

Suppose @Q�=@w � 0. From (39) it follows that @q�v=@w < 0 for all v 2 [0; ~v�). Furthermore,
Lemma 1 then implies that @q�v=@w � 0 for all v 2 [~v�; 1]; as a result, @Q�=@w < 0 must

necessarily hold. Now, notice that if @Q�=@w < 0, then (39) implies @q�v=@w > 0 for all v 2
[m; ~v�]. Moreover, in case ~v� < 1, since 8v 2 (~v�; 1] the constraint q�v � 1 is binding, @q�v=@w � 0
must necessarily hold for all v 2 (~v�; 1]. As a result, if @Q�=@w < 0, then @��v=@w > 0 for all
v 2 [m; 1], which in turn leads to @#� (m) =@w < 0.
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D.2 A Two-Good Simpli�ed Model

This model is a simpli�ed version of Jaimovich and Merella (2010).

Consider a two-good economy. Each good v = f0; 1g is potentially producible in two qualities:
a baseline quality, conveniently normalised to one (q0l = q1l = 1); a re�ned quality, denoted by

qvh > 1 for each v. Commodity prices are denoted by pvi for each v, with i = fl; hg and pvl < pvh.
The representative consumer is endowed with w units of resources, fully available for spending.

The budget constraint therefore reads:

p0lx0l + p0hx0h + p1lx1l + p1hx1h = w

Consumer preferences are represented by the function:

U = ln (x0l + [x0h]
q0h) + ln (x1l + [x1h]

q1h)

The representative consumer solves:

maxfxvig
X

v=f0;1g
ln

�X
i=fl;hg

(xvi)
qvi

�
s:t:

X
v=f0;1g

X
i=fl;hg

pvixvi = w

The additive speci�cation of the utility function conveniently allows to solve the problem in

two steps. First, for a given budget share devoted to spending on good v, denoted by �v, the

consumer chooses which quality to consume by solving:

maxfxvig ln

�X
i=fl;hg

(xvi)
qvi

�
s:t:

X
i=fl;hg

pvixvi = �vw

To solve this problem, note that the utility function is convex in fxvig. The problem thus

delivers a corner solution, i.e. xvi = �vw=pvi and xvj = 0, with j 6= i. The solution is found by
comparing the utility yielded by consuming either quality. The consumer chooses to consume

quality qvl if:

�vw=pvl � (�vw=pvh)qvh

and quality qvh otherwise. Hence:

xvl = �vw=pvl and xvh = 0 if �vw � (pvh)(pvh)
qvh

qvh�1
(pvl)

1
1�qvh

xvl = 0 and xvh = �vw=pvh if �vw > (pvh)
qvh

qvh�1 (pvl)
1

1�qvh
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Second, given the optimal quality, denoted by qv (and relevant price, pv), the consumer

chooses the fractions of resources to devote to the two goods by solving:

maxf�vg
X

v=f0;1g
qv ln

�
�vw

pvi

�
s:t:

X
v=f0;1g

�v = 1

To solve this problem, we may write the Lagrangian as:

L =
X

v=0;1
qv ln

�
�vw

pvi

�
+ �

�
1�

X
v=0;1

�v

�
which delivers the �rst-order conditions:

qv
�v
= �, with v = 0; 1X
v=f0;1g

�v = 1

Combining these conditions yields:

q0= (1� �1) = q1=�1

�1q0 = q1 � �1q1

�1 = q1= (q0 + q1)

and, similarly:

�0 = q0= (q1 + q2)

Denoting total quality by Q = q1+ q2, and replacing these two equations in those that solve the

�rst problem yields:

xvl = w= (pvlQ) and xvh = 0 if w � (pvh)
qvh

qvh�1 (pvl)
1

1�qvh Q

xvl = 0 and xvh = qvh= (pvhQ) if w > (pvh)
qvh

qvh�1 (pvl)
1

1�qvh Q=qvh

We can thus observe that, for �nite prices, each good will eventually upgrade qualitatively, as

illustrated by Figure A1.

To understand the e¤ect of quality upgrading on the budget shares, we need to be more

speci�c on the behaviour of prices. To this aim, we let prices be:

pvi = � (v) (qvi)
�(v)

where � (v) > 0 and � (v) > 1 are good-speci�c technological parameters (with the latter

governing the cost elasticity of quality upgrading). Note that, compared to Jaimovich and
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xvh

xvl

Figure A1: Intragood wealth expansion path

The quantities consumed of the low and highquality goods (xvl and xvh, respectively)
are measured on  the  axes  (horizontal  and vertical,  respectively). The parallel  solid
lines represent the intragood budget constraint for three different levels of income w
(from left to right,  less than, equal to and greater than w0,  respectively). The dotted
lines represent  indifference curves. The ticker solid segments on the axes  represent
the wealth expansion path.

Merella (2010), we normalise the value of the aggregate productivity parameter � = 1. Then,

we have:

pvl = � (v) ; pvh = � (v) (qvh)
�(v)

and:

xvl = w= [� (v)Q] and xvh = 0 if w � � (v) (qvh)
�(v)qvh
qvh�1 Q

xvl = 0 and xvh = w=
h
� (v) (qvh)

�(v)�1Q
i

if w > � (v) (qvh)
�(v)qvh
qvh�1 Q

Finally, denote:

w0 = � (0) (q0h)
�(0)q0h
q0h�1 Q; w1 = � (1) (q1h)

�(1)q1h
q1h�1 Q

In line with the Jaimovich and Merella (2010) benchmark model, consider �rst the case:

� (0) � � (1) and � (0) < � (1). In addition, assume � (1) ! 1. In this case, w0 < w1 = 1,
since:

� (0) (q0h)
�(0)q0h
q0h�1 � � (1) (q1h)

�(1)q1h
q1h�1 =1

The budget shares are �0 = �1 = 1=2 as long as w � w0, beyond where �0 rises above 1=2 as
w > w0, as illustrated in Figure A2.

Other possible dynamics can be illustrated by changing the above assumptions.
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βv

w

Figure A2: Intergood budget allocations (Engel curves)

Income is measured on the horizontal axis; the budget shares spent on consumption
of the two differentiated goods (βv, with v = 0,1) are measured on the vertical axis.
The solid lines depicting the optimal budget shares (which diverge when income w
becomes greater than w0) represent the Engel curves in a budget share form.

1/2

w0

β0

β1

Consider, now, the case: � (0) � � (1) and � (0) < � (1), assuming � (1) is �nite. In this

case, the budget shares are �0 = �1 = 1=2 as long as w � w0, beyond where �0 rises (again)

above 1=2 as w > w0. This is eventually followed by an increase in �1 as w > w1. Depending

on the relative value of the high-quality levels, the catching up may be partial (q0h > q1h), full

(q0h = q1h), or �1 may even overtake �0 (q0h < q1h)

Finally, consider the case: � (0) > � (1) and � (0) < � (1) < 1. If � (1) is small enough
relative to � (0), then it may be that:

w0 = � (0) (q0h)
�(0)q0h
q0h�1 > � (1) (q1h)

�(1)q1h
q1h�1 = w1

Mirroring the previous case, the budget shares are �0 = �1 = 1=2 as long as w � w1, then �1
rises above 1=2 as w > w1. This is subsequently followed by an increase in �0 as w > w1. Once

again, depending on the relative value of the high-quality levels, the catching up may be partial

(q0h < q1h), full (q0h = q1h), or �0 may even rise above �1.
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D.3 Unit prices at 1-digit level disaggregation

In Table A1 we group all the SITC-4 sectors/goods into their corresponding 1-digit sector.

Therein we report the 1-digit level average values of the interdecile unit price ratios and the

coe¢ cients of variation of unit prices, both calculated at the 4-digit level of disaggregation.

With the exception of sector 2, Table A1 seems to point to the common perception that the

quality ladders of primary goods tend to be shorter than those of manufacturing products (i.e.

sectors 5 to 8).

Table A1: Averages at 1digit level of disaggregation
Number of Average of Average of
products in maxtomin coeff. of variation

SITC4 classif. unit price ratios of unit prices

0  Food and live animals 93 4.46 0.711
1  Beverages and tobacco 11 4.86 0.656
2  Crude materials, inedible, except fuels 101 8.80 1.084
3  Mineral fuels, lubricants and rel. materials 20 3.21 0.876
4  Animal and vegetable oils, fats and waxes 18 2.67 0.526
5  Chemicals and related products 91 5.67 1.024
6  Manufactured goods classified chiefly by material 175 5.34 0.952
7  Machinery and transport equipment 157 7.54 0.919
8  Miscellaneous manufactured articles 78 9.94 0.887

ALL GOODS 744 6.38 0.927

SITC1 Sector
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